Bon Travail, mais le TP n'avait and Thomas Thomas par été fait en enper los de la séance nière paire voir l'autre compte rendu. (1: Some experiments with acis and bases

- Calibrate the pH meter
- We use 2 buffers solutions (solution tampon) which have a pH of 7 and 4

And we measure the pH of the buffer solution with a pH meter.

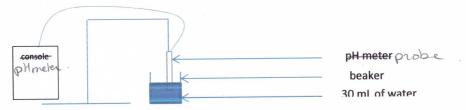
her After we check that the result is according to the pH value of the buffer solution.

Results:

0

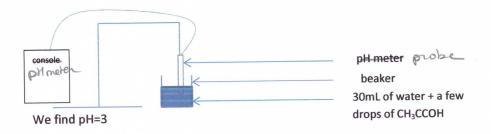
Buffer solution pH 7:6.9

Buffersolution pH 4: 3.87


Conclusion:

in accordance with Our results are according to the pH of the buffer solution so we can conclude that our pH meter is correctly calibrated.

Experiment 1: aqueous acidic solution


We measure the pH of about 30mL of water and we measure the pH of a solution composed by 30 mL of water and few drops of ethanoic acid (CH_3COOH) and we compare the results.

pH for 30mL of water

We find pH equal 7

pH for 30 mL of water and few drops of ethanoic acid

The pH decrease which means that $[H_3O^{\dagger}]$ increase so there is a production of H_3O^{\dagger} , so a chemical reaction.

• Before:

$$[H_3O^+]=10^{-7} \text{ mol/L}$$

• After:

$$[H_3O^+]=10^{-3} \text{ mol/L}$$

The reaction is immediate

Its equation is

$$CH_3COOH(I) + H_2O(I) -> CH_3COO^{-}(aq) + H_3O^{+}(aq)$$
Reactant products

The equation is in accordance with our measurements because $H_3\text{O}^{\dagger}$ is produced.

Experiment 2:

 \bullet $\ensuremath{\operatorname{\widehat{for}}}$ about V=20 mL of this solution into a beaker and measure its pH :

phl = 3

• Calculate the maximum extent : x_{max}

 $x_{max} = n(CH_3COOH)$ because H_2O is in excess

$$n(CH_3COOH) = C*V = 1.0*10^{-2}*20*10^{-3}$$

= $1.0*10^{-2}*2.0*10^{1}*10^{-3}$
= $2.0*10^{-4}$

• Using the pH measured, calculate the real (or final) concentration in oxonium ions $[H_3O^{\dagger}]$. Deduce the value of the final (or real) extent : x_f :

$$[H_3O^+]_f = 10^{-3} \text{ mol/L}$$
 So $n(H_3O^+)_f = [H_3O^+]_f *V = 10^{-3} * 20 * 10^{-3}$
$$= 20 * 10^{-6} = 2.0 * 10^{-5} \text{ mol}$$

$$\text{mode} = 2.0*10^{-4} - 2.0*10^{-5} = 2.0 - 0.20*10^{-4} = 1.80*10^{-4} \text{ mol}$$

 Compare x_f and x_{max}. Is the reaction between ethanoic acid and water complete (total) or limited?

 $x_{\text{f}}\!<\!x_{\text{max}}\!$, so the reaction between ethanoic acid and water is limited.

Equation	CH₃COOH (I)	+ H ₂ O (I)	CH₃COO¯ (aq)	+ H₃O⁺ (aq)	
	Quantities (in mol)				
Initial (x = 0)	2.0*10 ⁻⁴	excess	0	0	
During the reaction	2.0*10 ⁻⁴ - x	excess	х	х	
At the maximum extent $(x = x_{max})$	0	excess	2.0*10 ⁻⁴	2.0*10 ⁻⁴	
At the real final extent $(x = x_f)$	1.8*10 ⁻⁴	excess	0.20*10 ⁻⁴	0.20*10 ⁻⁴	

Experiment 3:

We measure the pH of a solution of hydrochloric acid

We calculate the maximum extent: x_{max}

We calculate the real concentration in oxonium ions $[H_3O^{+}]$ and we deduce the value of the final extent: x_f

We compare x_f and x_{max} and we determine if the reaction between ethanoic acid and water is complete or limited.

We find pH=2

Equation	HCI (g)	+ H ₂ O (I)	Cl¯ (aq)	+ H₃O ⁺ (aq)	
-	Quantities (in mol)				
Initial (x = 0)	2.0*10 ⁻⁴	excess	0	0	
During the reaction	2.0*10 ⁻⁴ - x	excess	х	X	
At the maximum extent $(x = x_{max})$	0	excess	2.0*10 ⁻⁴	2.0*10 ⁻⁴	
At the real final extent $(x = x_f)$	0	excess	2.0*10 ⁻⁴	2.0*10 ⁻⁴	

$$[H_3O^+]_= 10^{-2}$$
 mol/L
 $n=cxV$
 $n=10^{-2} \times 2,0.10^{-2}$ mol
 $n=2,0.10^{-4}$ mol
 $x_f = x_{max}$ so it's a complete reaction

Course

Hclis a strong acid

It means that its reaction with water is complete $Hcl + h_2O -> H_3O^+ + cl^-$

So $[H_3O^+] = C$

CH₃COOH(I) is a weak acid

It means that its reaction with water is limited